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A new method for model ing low-frequency plasma phenomena  is presented. The  method 
uses an  implicit formulation of the Vlasov-Maxwell equat ions to relax restrictions on  the 
time-step and  mesh spacing so that larger values which correspond to the frequencies and  
wavelengths of interest can  be  used.  As a  result, the range of length and  time scales accessible 
to p lasma simulation is increased by  orders of magnitude. The  algorithm, as  embodied in a  
new code VENUS for electromagnetic p lasmas in two dimensions, is described, its stability 
and  accuracy analyzed through linear and  nonl inear analysis, and  its properties, including 
suppression of the finite grid instability, illustrated through its application to the Weibel 
instability. 

To  extend the reach of nonrelativistic electromagnetic p lasma simulation in two 
dimensions to longer physical length and  time  scales, an  implicit method has been  
developed. The  implicit method alters the way the coupled field and  particle 
equations are advanced in time  and  eliminates many of the constraints on  the time  
and  space steps imposed by stability conditions. 

As is well known, explicit formulations of the Vlasov-Maxwell equations are stable 
only for values of the time  step At and mesh interval Ax that resolve all time  and  
space scales [ 1,2]. In electromagnetic p lasma simulation, for example, one  is 
required to use time  steps which resolve light waves and  space steps which resolve the 
Debye length, even when neither radiation nor charge separation effects are 
important. In many cases, the time  and  length intervals of interest are very large 
compared with the values of Ax and At that satisfy the stability conditions, and  then 
many time  and  space steps are required to integrate over them. This prevents the 
application of explicit p lasma simulation methods to many problems 131. 
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A number of algorithms have been developed to remove these restrictions. In some, 
the equations are split, as in one developed by Nielson and Lindman in which the 
field advancement algorithm is not subject to the Courant condition [4]. In others, 
reduced equations are formulated in which the fast time scales are eliminated. Two 
levels of reduction in two-dimensional, electromagnetic plasma simulation algorithms 
are the Darwin model, in which Maxwell’s equations are solved in the nonrelativistic 
limit [5], and the Darwin model with fluid electrons, in which the electrons are 
modeled by a collisional, sometimes massless fluid [6-91. In the Darwin formulation, 
light waves do not propagate and the corresponding limit kc At < 2 is replaced by the 
less restrictive condition, mpe At < 2. 

Even longer time intervals are accessible to hybrid models which eliminate the 
inertial response of the electrons and the corresponding limit mpe At, where mpe is the 
electron plasma frequency. Of course, each reduced model describes a reduced range 
of physical phenomena. 

It is the purpose of this paper to explore an alternative approach to modeling low- 
frequency electromagnetic phenomena in plasmas, namely, an implicit formulation of 
the equations. Many of the earlier difficulties in solving implicit equations described 
by Langdon [IO], have been addressed by the recent work of Mason [ 111 and 
Denavit [ 121 on implicit moment methods, and more recently, the direct implicit 
methods developed by Friedman et al. [ 131. 

In an implicit formulation, the restrictions on At are relaxed in a very different 
way. Instead of reducing the equations to eliminate the fast time scales, the full 
system of equations is differenced implicitly in the time variable and consequently 
made linearly stable for all At. In principle, At can assume any value. (In practice, 
nonlinearity and accuracy constraints limit At.) It can be chosen to resolve the time 
scale of interest, even when it does not resolve the highest mode. This property of 
implicit equations has been used in hydrodynamic and magnetohydrodynamic 
problems for some time [14-161. 

It is argued here that the unresolved modes should be damped, and in this way 
removed from the problem. When this is done, the implicit formulation and the 
reduced equations are similar in their effect on unresolved time scales. Even when fast 
modes are damped, however, there can be important differences in the results between 
the two approaches. Consider, for example, Landau damping on the ion-acoustic time 
scale. This can be correctly represented by the solution of the implicit equations, but 
it is eliminated at the outset from the solutions of the hybrid model unless it is 
explicitly modeled [ 171. Perhaps as important, the effect of unresolved modes on the 
solution can be measured simply by reducing the time step. 

The method for solving the implicit equations applied here to electromagnetic 
plasmas in two dimensions is an extension of Mason’s moment method [ 1 I]. His 
method for electrostatic plasmas in one dimension is based on the observation that 
particle and moment representations of the plasma do not differ significantly over one 
time step in their effect on the fields, because the fields depend only on the lowest two 
moments of the particle distribution, the charge density and current. Thus, implicitly 
formulated moment equations can be used to give stable estimates of the fields in 
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which particles move. Cumulative errors in the solution are reduced by reinitializing 
the moment equations each time step from the particle data, and by making the 
moment and particle descriptions as consistent as possible. 

The application of this method to electromagnetic plasma simulation in two 
dimensions and an examination of its properties form the remainder of this paper. 

The logical plan of the paper is as follows: The formulation of the implicit moment 
method for electromagnetic plasma simulation is described in Section 1. The 
fundamental equations are given, explicit and implicit methods are compared, and the 
implicit formulation is displayed. The numerical dispersion theory is developed in 
Section 2, especially as it relates to the linear and nonlinear stability of the implicit 
equations. An algorithm for the solution of the field equations and particle equations 
is outlined in Section 3. Comments on the similarities to the direct implicit method 
are made where appropriate [ 13, 181. Finally, numerical results of a study of the 
nonlinear evolution of the Weibel instability are presented in Section 4 [ 11. 

Throughout the discussion, appropriate spatial discretization is taken for granted, 
and the time discretization is emphasized (although an appendix giving a derivation 
of the moment equations is included). Coincidentally, one of the principal results of 
this work is that the implicit formulation also provides the means to suppress the 
finite grid instability when &,/dx < 1 [ 19,201. (It is done differently than previously 
proposed in that it does not depend on altering the spatial differencing [21]. For 
discussion on this point, the attention of the reader is called to Section 2c and 4f.) 

1. Formulation of an Implicit Method for 
Electromagnetic Plasma Simulation 

Beginning with the fundamental equations describing the evolution of a plasma in 
an electromagnetic field, an implicit algorithm is formulated and the properties 
examined. 

a. Fundamental Equations 

The fundamental equations are Maxwell’s equations 

g+vxE=O, 
V.B=O, 

(1-l) 

(1.2) 

(1.3) 

and 

V. E=4nN, (1.4) 
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where E is the electric field, B the magnetic induction, N the net charge density, and J 
the net current density; and the particle equations of motion 

dxwJ -u 

dt SP’ 

sP=%. du 
dt m, 

where s designates the particle type, and p the particle index. 
Where fS(x, u) is the distribution of particles of type s in (x, u), the net charge 

density and current are given by the moments of the distribution, 

and 

J = c J, = c qs 1 du U&(X, U). 
s s 

b. Plasma Simulation 
In the plasma simulation methods pioneered by Buneman and collaborators, [22], 

the large number of particles in a real plasma is represented by a relatively small 
number of simulation particles moving through a computation grid. With each 
particle is associated a position and a velocity (in addition to its charge and mass). In 
addition, each particle has a shape described by a shape factor h, a scalar function 
such that the definitions of charge and current on the grid for a numerical calculation 
are written [23,24] 

Ng = c qs c 4% - XSP) 

s P 

and 

J, = 2 4s c usp 4x, - xs,), s P 

where g is the grid index. The shape factor h has the properties 

1 = dx h(x) i 

and 
(zone area) h(x, - xl) = 1, g=g’, 

= 0, g+f;g’- (1.8) 
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With these definitions, the motion of the particles is reflected in changes in the field 
through Ng and J,, and, of course, vice versa. 

c. Explicit and Implicit Methods 
In an explicit plasma simulation method, the equations are marched in time with 

step At. To advance the solution from n At to (n + 1) At, the charge density and 
current are calculated from the particle data using Eqs. (1.6) and (1.7), the new fields 
are calculated using Eqs. (1. l)-( 1.4), and finally the new particle velocity and 
position are calculated using Eqs. (1.5). 

Exactly how the equations are solved has a profound effect on the accuracy and 
stability of the equations and much work has been done in this area, some of which is 
described in [2]. In general, though, all explicit methods are conditionally stable; that 
is, the time step must satisfy the inequality 

max wPs At < 2, s 

where wPs = (4mzq:/m,) is the plasma frequency. It is to remove this constraint on At 
that we are lead to consider an implicit formulation of the equations. 

In an implicit formulation, the solution is advanced from n At to (n + 1) At by 
marching the equations backward from (n + 1) At to n At. The essential idea is that 
what would be numerically unstable solution with growth rate ,l for At > 0 is also a 
numerically unstable solution with growth rate L for At < 0. Since the solution is 
known at n At, however, the effect of solving the equations backwards to match this 
solution is to reduce the mode at (n + t) At by the factor exp(--l At) from its value at 
n At. Thus, the same difference equations which are unstable when solved forward 
can be stable when solved backward in time. 

d. Implicit Formulation 
Consider the implicit formulation of the equations with only time discretized, 

written 

and 

-B”)+(VXE”+~)A~=O, V.B”=O, 

-En)-V xB”+eAt=--14nJ”+rAt, 
C 

x”+l 
SP 

--” =Un+e 
SP sp 4 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

n+r x B” 
pt+e + USP 

C 
At, (1.13) 
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where the superscript denotes the time at which the corresponding term is evaluated, 
and 0 < (~9, r) ( 1. The field E” “, for example, 

E n+e=8E”+‘+(l-@E” (1.14) 

is a linear interpolate between E”+l and E”. (In Eq. 1.13, E”+ e is evaluated at xfPtr. 
For all 6 and r > 0, the equations are implicit. As 0 and r increase from d to 1, 
however, the formulation becomes more nearly backward differenced. When the 
equations are implicit, a coupled system of equations must be solved because 
unknown quantities, such as Bnte, appear on both sides of the equations, An iterative 
solution of Eqs. (1.9)-( 1.13) is somewhat cumbersome, because each iteration 
requires solving the equations of motion for all the particles. 

As Mason has observed [ 111, the information needed from the particles to advance 
the field is contained in the moments N”+’ and Jntr, and these can be estimated by 
taking moments of the Vlasov equation. The resulting system of equations can be 
solved iteratively using methods similar to those used to solve the explicit equations. 

The moment equations, however, can be derived more directly than from Vlasov’s 
equation beginning with the definitions of Nnte and Jntr, written 

N ;+e=qs~h(x-X;sfe), (1.15) 
P 

and 

J :+‘=qsCu~:rh(x-x~:r). 
P 

(1.16) 

As is shown in the Appendix, expansion of these equations yields moment equations 
(with particle equations of motion given by Eqs. (1.12) and (1.13)) which are written, 
neglecting all discrete grid effects, 

N:+‘= N: - V . Jftr (@/jr), (1.17) 

and 

J:+r = J;-V. J;+‘J,“IN,” 

J;+r x B” c 
I 

Q-At) - qs V . ~,(ZLIt), (1.18) 

where N,” and J: are calculated from the particle data using Eqs. (1.15) and (1.16) 
with r3, r = 0, and P, is the plasma pressure tensor defined by Eq. (A 11). 

It is appropriate to mention that the assumptions which are made in deriving the 
moment equations will impose an accuracy limit on the time step. The support of the 
moment equations derived in the Appendix is bounded by h to a cell and its eight 
nearest neighbors in two dimensions. To maintain the correspondence between 
moment and particle descriptions, it is necessary to bound the average particle 
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displacement to one cell per time step. When this limit is exceeded, as will be shown 
in the numerical results, energy conservation deteriorates. 

The limitation on the time step is not fundamental to the moment method. Rather, 
it is a consequence of expanding Eqs. (1.15) and (1.16) about the particle positions at 
the beginning of the time step. If it were possible to guess the position of the particles 
to within one cell and expand Eqs. (1.15) and (1.16) about that position, the 
limitation would be removed. For example, an expansion about the free-streaming 
position of the particles, 

w 
XPS = xis + u$ At, 

is accurate so long as the action of the fields over a time step does not cause them to 
change cells [ 131. In general, however, the turning points of the particle orbits 
complicate estimating Gps for inhomogeneous or magnetized plasmas, and much work 
is necessary before reliable algorithms are developed. (This problem is addressed in 
[ 181.) When reliable estimates of particle positions are developed, modifying the 
moment equations to make use of the additional information is straightforward. 

The equation for Jqtr can be written in the equivalent but more convenient form 
for computation, 

J 
:“=js+m 

qS (Js “, B”) Q-At) + (+) ’ (Js ’ F2” B” (T&)2, (1.19) 
s s 

where 3, is defined by 

-V.(J :+r J;/N:) - V . F, 
I 

Z-At)]/[ 1 + (w,,Z-At)2], (1.20) 

and CO,, z qs 1 B I/m, c. 
The pressure p, must be approximated to close the equations. The choice of 

closure must reflect the need (a) to approximate the evolution of the particle moments 
as well as possible and (b) to construct a system of equations with favorable stability 
properties so that estimates of the fields can be made over long time intervals. Several 
choices are open without constructing an energy equation. 

In the zero-temperature or cold-plasma limit, the pressure makes no contribution 
and thus the equations can be closed by the equation 

B, = 0. 

When (U,)’ & 1, the error made by neglecting p, is small, and the moment 
equations are unconditionally stable. 

To extend the method to warm plasmas, a more accurate P, is needed. P, can be 
approximated by its value at n At as computed from the particle data, 
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This approximation is appropriate when (U,)’ = O(l), and is accurate to O(dt’). 
Introduction of an explicit pressure, however, imposes a stability limit on the moment 
equations expressed by the inequality 

(kc, At) < 2R, 

when 8 = r = & where C, is the adiabatic sound speed, Cl = dp/dp in the absence of 
thermal conduction. When the time-step inequality is expressed in terms of (U,)‘, 

it is clear that the time step is restricted to the electron-plasma frequency time scale 
whenever P, makes a significant contribution to the equation for the current. 
(Conversely, the spatial variation is limited to long wavelengths when I+ At is 
large.) 

An implicit pressure formulation removes the stability limit on the time step, 
although the accuracy condition on the moment equations remains. One implicit 
pressure formulation can be derived by analyzing the pressure tensor P: into a scalar 
pressure p: defined by 

(V * V)pZ = v * (V l PI), (1.21) 

and a residual 

(1.22) 

A temperature can be defined from the equation of state 

p: = n,“kTz, (1.23) 

where k is Boltzmann’s constant. When the changes from t to t + df occur isother- 
mally, the scalar pressure can be advanced to pi+*, where p:+’ is given by 

PS 
n+e = ,,n+e T” 

s ks* (1.24) 

With this substitution, the Courant limit imposed by the propagation of sound waves 
is effectively removed when the anisotropy in the pressure tensor is not too large. The 
consistency of the equations is not changed. For example, as will be shown the error 
in the energy is changed by terms of O(At2), the same order as the error caused by 
using V . P: rather than V . P:+r. 

With some assumption about B,, Eqs. (1.9)-( 1.1 l), together with the continuity 
Eq. (1.17) and the current Eqs. (1.19) and (1.20) comprise a closed system which can 
be solved for En+ e and B”+e. Because it is not necessary to recalculate the particle 
orbits each time the equations are iterated, the particles are moved just once each 
time step with considerable savings in computation time. 

Although the particle simulation algorithm is emphasized, it is important to note 
that the formulation allows one or many species to be represented by the moment 
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equations alone. To convert the particle simulation to a hybrid model, all that is 
required is some prescription for the pressure. This may be as simple as an equation 
of state, or as complicated as an energy equation. Thus, the completeness of the 
description of the plasma given by the moment equations should be viewed as a 
positive aspect of the method, in that it increases the range of application enor- 
mously. 

2. Numerical Dispersion Theory 

a. Linear Stability 
An obviously necessary condition for the stability of the implicit method is that the 

moment equations used to estimate the fields be linearly stable for large At. The 
linear stability is easily determined. Where the state variables are decomposed into 
constant and fluctuating parts and Fourier analyzed, the linearized equations 
corresponding to zero constant current and electric field, and a constant B field B, 
can be written 

o=njt+* - ni + ik . ji”(6’At), 

0 = j[E” - jt - $ n,,Ette + jitr x B, 
I’At + q,ik . pJAt, 

s c 

+j;+” -B:)+i(kXEntB)OAt, 

and 

O=$ (Eite -E~)-i(kxB~t8)BAt+~4rrj;tr8At. 

When solutions of the form 

Jn;:=nz+’ 

(2.1) 

(2.2) 

(2.3) 

(2.4 ) 

(2.5) 

are substituted into Eqs. (2.1)-(2.4), the roots of the resulting characteristic equation 
indicate whether the normal modes are amplified from time step to time step. For 
stability, the inequality 

must be satisfied. 
The roots are calculated using standard eigenvalue routines [27]. The stability 

results can be summarized briefly. In the zero-temperature limit, the equations are 
unconditionally stable for 8, r > f. For 0, r > f, as 0, r or At increases, the value of 
IL1 decreases to zero indicating damping. For 0, r= f, 111 is exactly one for all values 
of At. In this special case, as At increases, ,l tends toward -1. 
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TABLE I 

Parameter Value 

C 1 
a 0.025 

%e 1 
Opi 0.1 
Bll 0.1 

m,lm, 0.01 

If the temperature is not zero, the equations are stable for some range of At when 
19, r > 4. Unconditional stability can be recovered if the pressure is made implicit, as 
may be done by assuming the equation of state 

P n+l_ -n ‘+ ‘kT”. (2.7) 

With this substitution, the equations are once again stable for all At when 8, I-> 4. 
Information about the correspondence of the numerical and physical dispersion can 

be extracted from L by equating exp[i(w + y) At] to A. A simple example illustrating 
this is shown in Figs. l-3. The physical parameters for this example are given in 
Table I. 

In Fig. 1, the variation of the real frequency with k, 0 < k&, < 1, for 0 = 0.6, r= f 
is shown. The time step, At = 0.010;~‘, is small enough that even for k = ,I; ’ , kc At 
is less than one. The modes from largest to smallest are light waves (right and left 
circularly polarized), electron-plasma oscillations, whistler waves, and ion-acoustic 
waves. In the figure, the smallest modes are indistinguishable from zero. 

FIG. 1. The numerical dispersion curves for the moment equations are shown for wave propagation 
in the direction of the magnetic field. From the top, the curves represent light waves, electron-plasma 
oscillations, whistler and ion-acoustic waves. With dt = 0.01 o;~‘, physical frequencies are accurately 
reproduced. 
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0 0.5 1.0 

kb 

FIG. 2. For the same case as in Fig. 1 but with At = nw;‘, the numerical frequencies are 
compressed into the interval -1 < w/w, < 1. From the top, the curves lie in the same order as in Fig. 1. 
The whistler and ion-acoustic frequencies are distinguishable and accurately reproduce the physical 
values, even though the frequencies of light waves and plasma oscillations are fractions of the physical 
values. 

In Fig. 2, the variation of the real frequency with k is shown for the same case as 
in Fig. 1, but with dt = AU;:. Now, the time step is large enough to introduce 
errors, and these are obvious. Quantitative comparisons are given in Table II where 
the shift in the real frequencies for M, = 1 for large At relative to their value for 
small At are given. Evidently, when w At is less than one there is an unambiguous 
correspondence between the physical (small At) and numerical (large At) values of 
the frequency. Furthermore, as w At decreases below bne, the correspondence 
improves very rapidly. For example, the whistler wave which asymptotes to the 
electron cyclotron frequency for large k is given within 1.4% for w At = n/10. From 
these results, one is lead to choose a At such that urnax At < 1, where o,,, is the 
maximum frequency of interest. 

Because of the distortion of those modes for which o At > 1, the phase velocity of 
light waves decreases with increasing k. In fact, when kl, = 1, the phase velocity of a 
light wave is reduced by numerical error to a value equal to the electron thermal 
speed in the case shown in Fig. 2. As a consequence, one may expect to see the 

TABLE II 

Dispersion error with 6’ = 0.6, At = I[ 

Mode wAt Aw/w V/W 

Light 40n -0.975 0.130 
Plasma 2n -0.480 0.0727 
Whistler n/l0 -0.008 1 0.0002 
Ion acoustic R/14 -0.004 1 0.0112 

581/46/2-8 
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FIG. 3. The damping for AI = n, 0 = 0.6 is shown. The curves are in the same order as in Fig. 2. 
Light waves and plasma oscillations are damped; the others are not. 

Cerenkov instabilities studied by Godfrey [28,29], in which resonant particles gain 
energy from the field but are unable to transfer it back. The numerical reduction of 
the phase velocity of light makes it likely that a very large portion of the plasma may 
become resonant with light waves to produce a disastrous instability. 

When dt is large, the unresolved waves are strongly damped as shown in Fig. 3 for 
8 = 0.6, r = 0.5. For kA, = 1, the light waves are decremented by more than 10% 
each time step (y/o = 0.129), and thus are virtually eliminated from a calculation. By 
contrast, the ion-acoustic mode is damped very little even for M, = 1, as summarized 
in Table II. Of course, with larger values of f?, the damping may be unacceptably 
large [ 121. 

The results shown in Table III for kA, = 1 indicate that the scaling of frequency 

TABLE III 

Scaling of dispersion with time step with k& = 1 

Time step (w,‘) 

Electron-plasma waves 

” Yb 

Ion-acoustic waves 

” Y/W 

0.1 1.410 0.007 0.07080 0.08035 
0.2 1.403 0.014 0.07080 0.0007 1 
0.4 1.376 0.027 0.07079 0.0014 
0.8 1.285 0.047 0.07078 0.0028 
1.6 1.058 0.067 0.07072 0.0056 
3.2 0.7255 0.073 0.07049 0.0112 
6.4 0.4294 0.070 0.0696 1 0.022 
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errors and damping depends only on ok. For both electron-plasma and ion-acoustic 
waves, the damping scales linearly with w dt for a very wide range of time steps. 
Furthermore, for equal values of o df, the relative damping rates y/o are equal. Since 
the ratio of time and space steps is constant (as will be discussed in Section 2c), as At 
increases, the resolved wavelengths increase proportionately. In practice, the relative 
damping will remain constant, independent of At. Thus, while poorly resolved modes 
are strongly damped, well-resolved modes are not. 

From observations such as these on the effect of implicit differencing, a simple, but 
effective, strategy for dealing with such problems emerges. The time step is chosen to 
resolve the fastest time scale of interest, and those modes not resolved by the time 
step are damped. This strategy is basically similar to that used in spatial differencing 
where smoothing through artificial viscosity or other means is added to ensure that 
the data remains resolvable by the grid. One difference between space and time 
discretization is that in space, all the data to be smoothed exists simultaneously. In 
time, it exists only at the present moment. Denavit has addressed this difficulty by 
storing several time levels to compute smoothing [ 121, but here the solution is inter- 
polated between two time levels, one present and one future to obtain a qualitatively 
similar effect. 

b. Energy Conservation and Nonlinear Stability 

Linear stability analysis of the fluid equations reveals no difference in stability for 
finite At between the zero temperature and implicit pressure closure assumptions. 
Differences are seen when particle effects are included and the energy method is used 
[25]. The energy method associates stability with the boundedness of the solution in 
an appropriate norm. Here, the total energy integral is used as the norm in an 
analysis which includes O(At’) terms and particle effects in the limit Ax = 0, and is 
nonlinear in the field amplitudes. 

As has been noted previously, energy is not a constant of the motion for leapfrog 
methods (except in the limit At = 0) because currents and forces at different times 
[ 29-3 11. In the solution of the coupled fluid-field equations, however, it can be shown 
that energy does not increase over a time step in the zero temperature limit. Here, the 
particle contribution to the total energy is included and increases in energy over a 
time step (which correspond to instability) are shown to be 
closure assumption. 

The total energy is the sum of the field and particle energies 

W=+-/(E’ +B2)dVi-~~ fm,(u,J2. 
s P 

associated with the 

(23) 

The change in the total energy from time step to time step is of interest. Except for 
energy fluxes across the boundary, the numerical value of the total energy should be 
constant. If it is increasing, the increase is due to errors in the numerical algorithm 
which typically increase as ;1, increases. If it is decreasing, the numerical algorithm is 
stable but dissipative. 
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The change in the total energy is easily calculated. Consider first the field energy. 
The change in the field energy in a time step is 

&&z&j. [E”+‘/2. (E”+’ -E”) + B”+l”. (B”+l -B”)] &‘. (2.9) 

Substituting from Eqs. (1.9) and (1.10) and noting that 

E ttt8 = ,$“+I/2 + (8 - f)(E”+ ’ - E”), 

and similarly for B”+e, A W, can be written 

cAt 
AW,=- 

4n I 
V.(E”+exB”+e )dV-Atj(E”+e.jn+r)dY 

-it&&l [(En+l -En)2 + (B”+’ _ B”)2] &r’. 

(2.10) 

(2.11) 

The first term in Eq. (2.11) is the Poynting flux across the boundary of the domain. 
For an isolated system, its contribution is zero. The second term is the work done by 
the fields on the particles. The estimated current used to calculate the fields is 
denoted by jnt r. Whether it leads to an energy loss or gain is determined by 
comparing it with the energy gained by the particles from the fields. The third term 
represents a volume loss or gain of energy. Since the integral in this term is positive 
definite, the sign of the term depends on the sign of (6- f). For 0 < 4, the 
contribution of this term is positive definite, the energy errors are positive and the 
numerical algorithm is unstable. For 8 > f, the contribution is negative definite, and 
the algorithm is stable but dissipative. Only for 0 = 4 is the contribution identically 
zero. 

The change in the particle energy can be evaluated similarly. The change in the 
particle energy is given by 

A W, = c c m,uyi”2 l (II:+’ - I$,). 
s P 

(2.12) 

Once again, noting that 

usa+ 1/Z = us”,” + (r - +)(I$+ ’ - uip), (2.13) 

A W,, can be written 

A W, = c 1 msusnP+r . (II:: ’ - utp) 
s P 

- (r - +) 2 C m&u&+ ’ - uyp)‘. 
s P 

(2.14) 

Once again, the second term is negative or zero only for r> f, Consistent with the 
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field energy result, the algorithm is stable with r, 0 > f. The first term represents the 
energy gained by the particles from the fields. Substituting from the equation of 
motion, Eq. (1.13), results in the equation 

Collecting the appropriate terms one finds that the change in energy attributable to 
numerical error can be written 

AWEAt (E”+e. (Jn+r - j”“)dV 

-i!$j [(En+’ _ En)2 + (Bn+’ _ J3”)2] &I (2.16) 

In magnetized plasmas (because of the gyrating motion of the particles), the last 
term in Eq. (2.16) will dominate A W. The effect will be to rapidly reduce the perpen- 
dicular temperature of the plasma to zero. To eliminate nonphysical cooling, r is 
always set to f so that, in the absence of electric fields, the plasma kinetic energy is 
identically conserved. (One may have noted in Table II that the damping of the 
whistler wave was less than for the ion-acoustic wave, even though the whistler 
frequency is higher. The reason is that the whistler wave becomes the electron 
cyclotron wave for large k, and is thus undamped with r= f.) 

The first term arises from the discrepancy between the particle and moment 
descriptions. It arises because the estimated current used to advance the fields may be 
different from the current which actually results from the action of the fields on the 
particles. The error can be computed by comparing the current computed from the 
moment equation, Eq. (1.18), and the current computed from the particles. Since the 
moment equation was derived by summing over particles, neglecting finite grid 
effects, the error arises from the estimate of the pressure pg. Therefore, the error in 
the energy transfer is given by 

At En+e . (J”+r - j”+‘-) dV 

= -rAt2 c qs 1 E”+e l [V . (I’;‘” - Ps)] c-iv. (2.17) 
s 

In general, the sign of the error is indefinite. If, however, the pressure is different 
from zero for only one specie (cold ions and hot electrons, for example) and that 
pressure is written 

P, = 1 (n, k7’,), (2.18) 
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then closing the moment equations by assuming P, = 0 leads to a positive definite 
volume error. Consider the volume term in the integral 

At 
I 
‘E”te. (J,+@ - jn+e) dV 

[V.(P:te.E”+e)-(P;+e.V).E”+e]dV. (2.19) 

Substituting from Eq. (1.11) yields 

&*q, ~(P~+e.V).E”+edY=4nAt2q,(N~kT,dV>0. 
I 

(2.20) 

Thus, when the pressure term is neglected, the energy increases at a rate proportional 
to the plasma temperature. In other words, neglecting the pressure causes the 
equations to be nonlinearly unstable for 8 = 4. 

On the other hand, including the pressure explicitly causes the equations to be only 
conditionally stable for 13 = f. The Courant limit will not be restrictive in cases where 
kJ, Q 1. The restriction, however, arises in the fluid equations, and is removed by the 
assumption of an isothermal equation-of-state which allows one to make the pressure 
implicit as described earlier. 

Because the equations are usually used with 6 > f, one might be concerned about 
energy losses due to numerical dissipation. The question is most easily answered by 
numerical experiments, but in the absence of mode coupling, poorly resolved modes 
are rapidly damped and cease to cause energy losses. Consider a particular mode w 
of the system. The evolution of this mode is given by the amplification matrix 

E ;+’ = AWE; = (A,)” EO,, (2.21) 

where EL is the amplitude initially. The rate at which energy is lost from this mode 
between n At and (n + 1) At is proportional to 

6(E,)* = (EZ;+‘)* - (E;)* = (A,) ‘“(I,, - l)*(EO,)‘. 

When 1, is small, as for poorly resolved modes (w At > I), 6EL is small when n is 
sufficiently large. 

With mode coupling, well-resolved modes can mode couple to produce modes at 
higher frequencies. These modes are more strongly damped because (y/o) a o. One 
might, however, argue that energy losses are reduced because the higher frequencies 
are, at most, twice as large as the source frequencies in each mode coupling step. 
Thus, it requires several mode coupling steps to transfer energy from well-resolved 
modes to poorly resolved modes, a process which the increasing damping of inter- 
mediate modes would tend to suppress. That energy is conserved in numerical 
experiments tends to support this’ argument. (By comparison, if there were no 
damping for o < o0 and heavy damping for o > wO, energy transfer could occur in 
one step from undamped to damped modes and energy conservation may be poorer.) 
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c. Plasma Dispersion Theory . . 

To illustrate the effect of the implicit formulation on the plasma dispersion theory, 
the dispersion relation for a one-dimensional, electrostatic plasma is developed. The 
dispersion theory is first developed in the limit dx = 0, and later extended to include 
finite grid effects. (For convenience, it is also assumed that the number of particles in 
each element of phase space can be expressed as a distribution f(x, v, t) and that the 
ions form a fixed, neutralizing background.) 

In the usual way [26], Vlasov’s equation is solved by the method of characteristics. 
Since df/df = 0 along the particle orbits, 

f (xn+’ - II”+’ At, v”+’ - q/mE”+e At, t) 

= j-(x”+‘, v”+l, t + At), (2.22) 

where 0 Q  19 Q  1 as before. Where F,Jv) is the Fourier component off, the Fourier 
component of the charge density is given by 

NEf=q(dv’F,(v’), (2.23) 

the electric field is computed from estimated charge density at (n + 0) At, 

ikE;+e = 4nli$+e, 

and the time dependence is assumed, 

f(x, v, t + At) = exp(io At) F(x, v, t), 

the dispersion relation can be written 

(2.24) 

In this equation, the integral is in standard form (261. The only change is the coef- 
ficient Q+ ’ /Nz which appears because the moment equations are used to solve for 
the electric field. The coefficient is given by the solution of the characteristic equation 
for the moment equations given above 

1 =&+‘/N[t. (2.25) 

Thus, to solve for the roots of the plasma dispersion equation, the roots of the 
moment equation for the corresponding case are first computed and substituted into 
Eq. (2.24), and the roots of the resulting relation are solved for in the standard way. 

To extend this dispersion theory to include finite grid effects, one simply replaces 
wi by ncui in Eq. (35) in [26]. Particularly, since the finite grid instability, which has 
a growth rate of O(o,,) has a potentially disastrous effect on long time-scale 
calculations, the effect of the dissipation in the formulation will be studied. As has 
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FIG. 4. The finite grid instability is unstable for Ax > 0. With At = 0, which corresponds to the 
result with an explicit formulation, the maximum growth rate is O.O25w,,. 

been noted previously [ 121, the grid instability still occurs when an implicit 
formulation is used. The results given below, however, seem to suggest it can be 
suppressed by the numerical dissipation introduced by implicit time differencing. 

First, because the instability is electrostatic, it is reasonable to assume that an 
analysis which includes electromagnetic effects would give similar results to one 
which does not. Beginning with Eq. (2.24), a dispersion relation which includes finite 
grid effects is obtained by combining a 1 evaluated by substituting finite-difference 
approximations for spatial derivatives in the moment equations, with the form of the 
integral given by Lindman [26] which includes grid alias effects. For the electrostatic 
case, the solution for A is elementary, and will not be discussed here. Similarly, the 
sum which replaces the integral in Eq. (2.24) when finite grid effects are included is 
given in [26]. The results for a finite grid unstable case are interesting, and are shown 
in Figs. 4 and 5. In Fig. 4, the imaginary part of the frequency, y, is shown for a case 

Ax=00 
-38 

Ax=l2A~ 
'\ 

-0.61 / / I 
0.0 0. I 0.2 0.3 

hXD 

FIG. 5. The dispersion in the implicit moment equations reduces the finite grid instability. With 
wP AC = 1, the maximum growth rate is 10-30,,. 
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with wP At = 0, 8 = 1. For Ax = lU, , y is positive corresponding to instability. With 
wP At = 1 and 0 = 1, the maximum value of y is reduced from 0.02%0,, to less than 
lo-%+ Evidently, the effect of increasing the time step in the solution of the 
moment equations is to reduce the growth rate of the finite grid instability. As will be 
shown in the numerical results, the instability is also suppressed with oP At > 1 and 
I9 N 0.6. 

The suppression of the finite grid instability by the numerical dispersion introduced 
by the moment equations is of considerable practical importance. It means that the 
quasi-neutral limit, where &/Ax 4 1 and ccP At %- 1, is accessible to computation 
using the implicit moment method with sufficient dissipation. 

The need to suppress the finite grid instability imposes a lower limit on the time 
step. The correspondence of the moment equations to the particles deteriorates when 
uth At/Ax is too large, and the finite grid instability occurs when it is too small. 
Empirically, when At satisfies the inequality 

0(10-l) < vt,, At/Ax = (&,/Ax)(o, At) < O(l), (2.26) 

the solutions are both stable and accurate. 
Satisfying the inequality is not restrictive in practice. One notes that the 

conjunction of long-time and space scales is typical of most physical problems. 

3. An Algorithm for the Solution of the Implicit Equations 

a. Potential Formulation 
The practice in the WAVE code [ 1,321 has been followed in formulating the 

implicit field equations in a new code, VENUS, in terms of the scalar and vector 
potentials $ and A rather than E and B directly, although as Langdon has commented 
earlier, “In terms of the numerical and physical properties of the algorithms, there 
seem to be few grounds for preference either way...” [2]. Where E and B are given by 

(3.1) 

and 
B=VxA, (3.2) 

with the Coulomb gauge 

V.A=O, (3.3) 

the homogeneous equations, Eqs. (1.1) and (1.2), are automatically satified. The 
inhomogeneous equations become 

1 cT2A ---+V2A= -47rJ 1 8 
c2 at2 7 +,-;iTW) (3.4) 
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and 

V ‘4 = -4nN. (3.5) 

It is the solution of Eqs. (3.4) and (3.5) with which the remainder of this section will 
be concerned. 

b. Consistency Requirements 

The spatial differencing of the field equations for WAVE has been discussed exten- 
sively elsewhere and will not be repeated [ 1, 2, 321. However, the time differencing of 
the implicit equations raises several new issues. Specifically, one must choose the 
time levels in the equations consistent with both the difference equations (1.10) and 
(1.11) and the differential equations (3.4) and (3.5). 

First, consistency with the difference equations requires that the same time levels 
appear on both sides of Eqs. (3.2) and (3.5), 

Vz$“+ ’ = -4aN”+ I, (3.6) 

V x A”+’ = B”+‘. (3.7) 

Second, the induction equation must be satisfied in difference form as well as in 
differential form, 

&X 
C ( 

““+;r”“)+vx [+(~)“‘“]=o, 

or 

8A C-1 
rite A n-t1 -A” 

at = At * 

(3.8) 

Finally, as a consequence of choosing the Coulomb guage, the divergence of Eq. 
(2.4) satisfies 

-4nV .J+J+)=O (3.10) 

If the solutions to the difference equations are also to satisfy V . A = 0, it follows 
from Eq. (3.10) and the continuity equation (1.17) that 

V2(“+’ + 47#‘+’ = V2tin + 4rrN”, (3.11) 

where N” is the charge density appearing in Eq. (1.17); that is, the potential 4” must 
be recalculated from the particle data at the beginning of each cycle rather than being 
carried over from the previous cycle. (There is no corresponding requirement for A”.) 
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Having assured consistency with the difference equations, we may now write down 
the potential equations to be solved, 

1 A”+’ _ 2A” + A”-’ 47#+r yp _ v(j* 
-- 

c2 At2 
+V2Ante=--+ dt (3.12) 

- v2$p’ = 4fi”+‘* (3.13) 

These equations, together with Eqs. (1.17) and (1.18), are solved each cycle to give 
the value of E”’ e needed to advance the solution. 

c. Iterative Solution of the Field Equations 
The solution of the field equations requires the simultaneous solution of the 

continuity, current, and potential equations. There are many ways to do this. Here, 
the method of Concus and Golub [34] is adapted as described by Nielson and Lewis 
[5]. The algorithm will differ in detail because the dependences on the unknown fields 
in Poisson’s equation are different. 

The goal in rewriting Eq. (1.11) is to obtain an equation for which the numerical 
operator to be inverted is diagonally dominant. To do this, the principal dependences 
on Ente on the rhs are identified and subtracted from both sides of the equation. The 
resulting equation is written 

v * (1 + 0)(V#“+@)(‘+r) = 4n(N”@)(‘) + fl(v#“+e)(‘), (3.14) 

where (I) denotes the iteration number and R and /3 are defined by 

0=/3[1 +@f82Ar2/(l +8)] (3.15) 

and 

/? = I-&$, At2/(l + e2wf At2). (3.16) 

The principal steps in the derivation of Eq. (3.14) are: Eq. (1.11) is rewritten 

V(Ent e - E”) = 4n(N” + e - N”), 

and Nnte -N” is evaluated from Eq. (1.17). The current Jn+r in the resulting 
equation is evaluated from Eqs. (1.19) and (1.20), in which terms are rearranged so 
that the dependence on Eflte is explicitly displayed, 

J 2 (E ‘,f;jB (Tdt)‘], 

where f is defined by 

2 0-B”) 
cz B”(TAt)’ 
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and 

j 3 J” + [-V . (J”+rJ”)/N” - v . ij] l-‘dt/[ 1 + (O,hit)*]. 

Poisson’s equation is now written 

V.E n+e = V l [E” - 4&?dt)] 

-V. ]w;(Bdt) [En+‘+ (;) E”‘“cxB” (Tdt) 

(l-At)* Ii [ 1 + (uJ,Tdt)2] I 
Noting that Eq. (3.14) is an equation for the scalar potential, the transverse part of 
E ‘+’ is ignored, and the equation above can be solved for E”+e in the same way 
Eq. (1.19) was derived from Eq. (1.18). Noting that E”+e . B” is proportional to 
(E” - 4d(edt)) l B”, straightforward algebraic manipulation yields Eq. (3.14). To 
generalize Eq. (3.14) to multiple species, appropriate sums over species are taken in 
Eqs. (3.15) and (3.16). 

(The equation for the potential is misleadingly reminiscent of the corresponding 
equation in the direct implicit method [ 13, 181. The coefftcient R is added only to 
maintain diagonal dominance, and is not the susceptibility.) 

In solving for (, R may be replaced by its average value over the mesh. For 
inhomogeneous plasmas, it is faster overall to solve for a pseudopotential, 

V#’ = (1 + a> vqh 

and solve a second potential equation to ensure zero circulation of the longitudinal 
field. 

The equation for the vector potential, Eq. (2.10), is solved in a similar way. This 
time, however, terms of O[(o, At)*] and higher are neglected. The resulting equation 
for Ante can be written in standard form 

VzAtt+e -&(l +&4r)Ante]““’ 

=-+4dn+r+- 
eft tvg 

n+e -v+p) 

--a LI~(A”+~)(‘) 
Be2 At 

+ & [(I + 0) A” - OAn-‘1, 

(3.17) 

where C(y) is the average of the maximum and minimum values of a(x, y) in x [5]. 
When the implicit pressure is used, the wi appearing in Eq. (3.16) is replaced by 

u$ + k*a*, where k* z 2/(27r)‘(l/Ax* + l/Ay*) and a2 =p”/N” is the “sound speed” 
as described earlier. 



IMPLICIT PLASMA SIMULATION 293 

Experience has shown that the iteration converges with the equations described 
above, and the results of the previous cycle as the initial guess. The rate of 
convergence is adequate, but not remarkable. With oP At = 10, the number of 
iterations required for a relative error of 10m5 is O(lO-20). (The convergence is not 
uniform, with very rapid convergence the first few iterations. This suggests that 
acceleration techniques might reduce the number of iterations substantially.) 

d. Solution of the Particle Equations of Motion 
After the fields have been estimated, the particle equations of motion (1.12) and 

(1.13) must be solved to complete the advancement of the solution from n At to 
(n + 1) At. As is noted in the Appendix, the equations of motion are written in the 
frame of the particle. The electric field E”+e appearing in Eq. (1.12), for example, 
must be calculated at x”+~, the position of the particle at the intermediate time. When 
En+e(x”+r) is obtained by interpolation from E”+‘(xg), Eqs. (1.12) and (1.13) form a 
system of polynomial equations for x”+~ and u”+~. To solve these equations, a 
simple Newton-Raphson iteration is used. 

Note that Eq. (1.13) for ufz ’ can be written in the more convenient form 

(3.18) 

where 

and the intermediate velocity ti is given by 

ii = un + $ Ente(l-At). (3.19) 
s 

In this form, the components of un +’ are separated and the equations can be solved 
conveniently. 

When the time step is large, the particle motion almost reduces to the guiding 
center limit, 

lim 
At-rm 

uij+‘,” = {(E’+e x B”) + (ii,, . B”) B”}/B” . B”. (3.20) 

The VB drifts are lost in this limit because the gyroradius contracts to zero with large 
time steps. When w, At < 1, however, the VB drifts are correctly represented even 
when the gyroradius is less than a cell because the exact particle orbits in the inter- 
polated fields are calculated. (From the analysis given in [39], it appears that the 
correct fields are calculated even when VB drifts are not, because the drift current is 
cancelled by the magnetization current.) 
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e. Boundary Conditions 

The implicit formulation does not alter the treatment of boundary conditions 
significantly from that for explicit plasma simulation. (A complete description of 
boundary conditions is given, for example, in [2].) Some care must be taken with the 
solution of the particle equations of motion, because particles may leave the 
computational domain during the iteration. At present, periodic and aperiodic 
boundary conditions have been applied with no sensible difference in computational 
cost or difficulty. 

4. Numerical Results 

To illustrate the application of the implicit method to the calculation of a plasma 
instability, the results of simulation of the Weibel instability are presented [35]. This 
problem is chosen because numerical simulations exist to compare with [ 11, as well 
as some nonlinear theory [36], and it shows the behavior with larger time steps and 
cell sizes than were used in the calculations of magnetoacoustic shocks presented 
earlier [40]. The discussion will emphasize the numerical properties of the algorithm, 
namely, the effect of time and space discretization, closure assumptions, and 
centering on stability and energy conservation. 

a. The Weibel Instability 

The Weibel instability is driven by a temperature anisotropy in an unmagnetized 
plasma on an inductive time scale; that is, neither electrostatic plasma oscillations 
nor retardation effects alter the instability in any important way 1371. 

In a plasma characterized by an anisotropy a in the temperature in x and y, 
a = (u~//u: - l), where u, and u, are the thermal velocities, the plasma instability is 
associated with a magnetic field B,(y) with mode structure 0 < k,c/o, < a”* [ 11. 
The maximum growth rate of the instability occurs for some intermediate value of k,, 
and decreases with decreasing values of a. Thus, as the growth of the instability 
decreases the anisotropy, the nonlinear evolution will be characterized by slower 
growth rates and the dominance of longer wavelength modes. The asymptotic value 
of a will be greater than zero for all finite periodic intervals. 

b. Numerical Simulation 

The evolution of a Weibel instability is displayed in Fig. 6, where the magnetic 
field energy is plotted for a simulation with VJC = 0.1, a = 3 and periodic intervals 
0 < x < lOc/o,,, 0 < y < 2oc/w,, . (Compared with the earlier calculations of Morse 
and Nielson [ 11, these have lower temperatures and anisotropies but similar periodic 
intervals.) The electric field energy is also plotted but is too small to be seen. The 
numerical parameters for the calculation are upe At = 5, 8 = 0.55, N, = 64, N,, = 32. 
The pressure is implicit as described earlier. 

As shown in Fig. 6, the magnetic field energy increases exponentially in the 
interval 0 < t < 35Ow,‘, at which time the instability saturates. Subsequent to 
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FIG. 6. The growth of the magnetic field energy due to the Weibel instability is shown. The energy 
remains high because the periodic interval is too small. 
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FIG. I. Early in the growth of the Weibel instability, several modes in y are of comparable 
amplitude. 
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saturation, the energy continues to increase slowly until near the end of the 
calculation at t = 3000~0;~‘. The slow growth can be approximated by the function 

Es(t) = E,(l - e?‘), 

with 1= 1/15000;~’ and E, s 3.0 x 10e2. 
The anisotropy a slowly decays to an asymptotic value greater than zero. The final 

value of a, (I = 0.62, corresponds to a minimum unstable wavelength in y equal to 
8.97c/o,, . Thus, only the longest representable wavelength is unstable, and only 
marginally so with the residual anisotropy. 

The evolution of the spectrum can be seen by comparing the spectra of B, at 
t = 125~;~’ in Fig. 7 with that at t = 31250;~’ in Fig. 8. In both, those modes with 
k, = 0 are largest. At the earlier time, the first two modes in k, are large, but at the 
later time, only the first mode, the only unstable one, is still large. 

The maximum value of the magnetic field energy can be compared with the 
nonlinear estimates [36]. From the nonlinear theory, the maximum relative value of 
the magnetic field energy is 5.6%. From the simulation, the observed maximum 
relative value is 5.13%. 

As these results show, the numerical results of the calculation are consistent with 
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FIG. 8. Long after saturation of the instability, the longest wavelength mode is present and still very 
large. 
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linear and nonlinear theory, and, by extension, with the computational results [I]. 
There is, however, one significant difference. The time step, mpe At = 5, is 25 times as 
large as that used in the earlier calculations, and the time interval represented is 
nearly 10 times as long. 

The large time step may be expected to introduce some numerical error. For one 
thing, the rms displacement of a particle in y is 1.5 cells/time step. The errors do not 
appear to be unacceptably large, however. Only 8% of the total energy is lost over 
the course of the run. 

c. Implicit and Explicit Pressure 

Having established that the simulations correctly reproduce the physical behavior 
of the Weibel unstability, the discussion now focuses on numerical issues. First, the 
results when an explicit rather than an implicit pressure is used are considered. 

In Fig. 9, the magnetic field energy history is plotted for a calculation with explicit 
pressure. The history can be divided into four intervals: exponential growth, 
saturation, decay, and finally, exponential regrowth. The first two correlate with the 
history shown in Fig. 6 with implicit pressure. The subsequent regrowth, however, 
occurs only with explicit pressure. Its cause is the heating of the plasma in the y 
direction leading to an actual change in sign of a. As the Weibel instability increases 
the temperature in y, a particle traveling at the thermal velocity in the y direction 
crosses more than one cell each time step. What is observed is that the rate of heating 
is proportional to the displacement, so that exponential instability results. The heating 
actually changes the sign of a, shown in Fig. 10, causing the magnetic field energy to 
increase again at the end of the calculation as a new Weibel instability grows with 
different polarization. 

The observed instability is not the usual fluid instability, but it does occur when 
the Courant lim it for stability of the moment equations is exceeded. The instability is 

i 

::;\ l--J&L 0.00 k 
00 1000 2000 3000 

TIME 

FIG. 9. With explicit pressure, the plasma is heated by a numerical instability which causes the 
magnetic field energy, shown here, to evolve differently than with implicit pressure (Fig. 6). 

581/46/2-9 
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FIG. 10. With implicit pressure, the temperature anisotropy reverses sign causing the increase in 
magnetic field energy seen in Fig. 9. 

probably altered by the reinitialization of the moment equations from the particle 
data each time step because coherent oscillations are washed out by fluctuations in 
the particle data. Nevertheless, the result is the same. When the Courant limit is 
exceeded with explicit pressure, significant heating ( + 900%) occurs (Fig. 9). With 
implicit pressure (Fig. 6), some dissipation occurs (-8%) which is larger than it 
would be were the time step smaller. Thus, the right-hand inequality in Eq. (2.28) 
does not represent a Courant limit for the implicit pressure formulation in the 
ordinary sense, since, when exceeded, it leads to only small increases in errors in 
energy conservation rather than instability. 

d. Long- Wavelength Results 

Because of the implicit formulation of the dynamical equations, the size of the 
periodic intervals can be increased without increasing the number of cells. In Figs. 
1 l-13, the results are displayed for the same problem as that described earlier, but 
with 0 < x < 2Oc/o,, , and 0 < y < 4Oc/o,, , and mpe At = 10. That is the periods are 
doubled in x and y, and the time step is doubled also at no increase in computational 
cost. 

There are several interesting differences between the small and large “box” 
calculations, although clearly consistent with linear and nonlinear theory [36, 371. 
First, the magnetic energy, shown in Fig. 11, decreases after saturation rather than 
continuing to increase, and it continues to decrease throughout the calculation. 
Second, the anisotropy a shown in Fig. 12, decreases to a = 0.22 at t = ~OOOW;~‘, 
much less than the value a = 0.62 observed in the small “box” case. The reason for 
these differences is simply that the larger box size increases the maximum represen- 
table wavelength and allows a closer approach to the final equilibrium values. Instead 
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FIG. 11. With a larger periodic interval, the magnetic field energy decreases after saturatiou of the 
Weibel instability. 

of the quasi-stationary result described earlier [ 11, we see the more typical decay of 
field energy as, for example, is often seen in electrostatic instabilities [38]. 

The steady state reached in the case of a small box has been described as a 
stationary magnetic BGK mode [ 11. We see, however, from the simulation with a 
larger box that these modes are inherently unstable and dissipate if the system is large 
enough to allow coupling to longer wavelength Weibel modes. 

This reasoning is supported by behavior of the spectrum shown in Fig. 13. At 
t = 3ooow,’ ) only mode 1 is large, corresponding to the longest representable 
wavelength in the problem, ,I = 4Oc/w,,. This corresponds to a residual anisotropy of 
a = 0.025 compared with the observed value of a = 0.223. At this value, the first 
three modes in y are still unstable, but their growth times are much longer because c1 

0 500 1000 1500 2000 
TIME IN I+’ 

FIG. 12. The temperature anisotropy decays to a small fraction of its initial value due to the Weibel 
instability. 



300 BRACKBILL AND FORSLUND 

IO0 I 

lci2 

to4 

I@ I 
0.00 10.0 20.0 

kx 

166 

I# 
-40.0 0.00 40.0 

kY 

FIG. 13. Even with a larger box, only the longest wavelength mode in y is large indicating that the 
end state is always determined by the box size. 

is small. Because of this, it may require a very long time for the asymptotic value of 
CI to be reached. (Note that the mode is now oblique to the reference direction with 
k, # 0.) 

e. Energy Conservation 

The overall energy conservation gives a general measure of the accuracy of a 
calculation. Several numerical parameters can affect conservation, among them the 
time step, the number of particles, and the time-centering parameters 19. 

The parameter 0 has a special role, for its value is chosen to give the desired 
amount of dissipation. Over a narrow range, B has been varied for the Weibel 
instability with explicit pressure and mpe At = 5. Decreasing 8 decreases the energy 
error proportionally for tJ > f. With t9 = f, however, the energy error is large, 
evidently as a result of the lack’ of selective dissipation to balance the heating 
introduced by the explicit pressure. 

Changing the number of particles also affects the accuracy of the calculation. The 
small box case has been repeated with 22,500 particles rather than the 90,000 used 
above. The energy history is the same as before. The energy conservation, however, is 
much poorer. Almost 14% of the initial energy is lost compared with 4% with more 
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particles. With fewer particles, the electrostatic field energy is twice as large, and 
since it is probably the ultimate channel for energy loss, the energy loss is greater. 
With C+ dt = 5, the electrostatic fields are strongly damped to a level determined by 
sampling errors in the calculation of the charge density. Since the statistical error 
scales as N-l’*, where iV is the average number of particle per cell, fewer particles 
correspond to a higher field. It should be possible to estimate the proportionality 
constant between energy loss and particle number, but it has not been done. 

f. Finite Grid Instability 

Finally, the effect of making &,/Ax small is considered. As is well known, when 
&,/Ax Q  1, an instability due to aliasing errors on the spatial grid occurs [ 19,201. 
This instability has a nonzero growth rate even with At = 0, and saturates after 
heating the plasma until &,/Ax = 0( 1). Because of these properties, its existence often 
determines the maximum meaningful time interval over which a plasma simulation 
can be continued. 

In the implicit formulation of the equations, the finite grid instability has not been 
specifically addressed. Several properties of the implicit equations, however, mitigate 
the effects of the instability. For example, as Mason has described [ 1 I], simply 
increasing the time step suppresses the electric field and tends to reduce the growth 
rate of the instability. As evidence of this, the results shown in Fig. 14, with 
mpe At = 10, can be compared with those in Fig. 15, with cc,, At = 1. In the latter, the 
jagged curve is the electric field energy. The results in Fig. 15 are clearly incorrect 
physically, for the total energy increases by to several times its initial value. The 
saturation of the instability is associated with an increase of &,/Ax from 5.6 X lo-* 

IO. 14. With a large time step, wpc At = 10, the evolution of the Weibel instability is accurately 
:sented even when &/Ax = 0.056. 
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FIG. 15. With a small time step, upr At = 1, the finite grid instability dominates the evolution of the 
Weibel instability. A very large electric field (jagged curve) is generated and the plasma is heated until 
&,/Ax- 1. 

FIG. 16. Even with a large time step, w,, AI = 10, a finite grid instability results with a coarse grid 
&,/Ax = 6 x lo-‘. With 6 = 0.55, the electric field due to numerical instability (which is, just visible a 
t = 2000~;~‘) causes significant heating. 
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FIG. 17. When the dissipation is increased (0 = 0.8), the finite grid instability is suppressed. The 
magnetic field energy is much smaller than in Fig. 16, and total energy conservation is excellent. 

to approximately 5 x 10-l. A comparison of the electric field energy E, on the initial 
cycle indicates why reducing the time step increases the seriousness of the instability. 
With qe dt = 10, E, = 5 X lo-‘, but with w,,, dt = 1, E, 2: 2 X 10e3. 

Even with qe At = 10, however, the instability can be troublesome. Results with 
&,/Ax = 5.7 X 10e3 are shown in Fig. 16. Although the electric field energy remains 
small compared with the magnetic field energy, the instability evidently causes an 
increase in the total energy by several hundred percent. 

All is not hopeless, for, as has been described above, increasing the dissipation 
parameter 8 reduces the growth rate of the finite grid instability. With 
&/Ax = 5.7 x lop3 and 0 increased from the value 0.55 used to generate all previous 
results to 8 = 0.8, the results are as shown in Fig. 17. In this case, the measured 
growth time for the finite grid instability is 1.47 x 1050,&‘, and the energy increases 
by 4% over the duration of the calculation. A higher value of I.3 would result in even 
longer growth times. 

(It is possible that 8 could be computed automatically. Perhaps 0 can be 
recalculated from time to time, so that the change in total energy from cycle to cycle 
is small and slightly negative. Of course, for stability 8 must be constrained to the 
interval, j < 8 < 1.) 

CONCLUSIONS 

An implicit plasma simulation algorithm for nonrelativistic, electromagnetic 
plasma simulation has been outlined, some of its numerical dispersion properties 
analyzed, and numerical results presented. From this discussion, it is apparent that 
the implicit formulation significantly extends the time and space scales accessible to 
plasma simulation. The increased capability is apparent in some of the problems 
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which have been studied using the VENUS code, among them the electromagnetic ion 
cyclotron [41], firehose, filamentation [41, K. Quest et al., p. 1001; J. U. Brackbill 
and D. W. Forslund, p. lOlO], and lower hybrid drift instabilities [41, J. U. Brackbill, 
p. 10461, and the study of enhanced lateral transport in laser irradiated plasmas [41, 
D. W. Forslund and J. U. Brackbill, p. 8731. The results will be presented at greater 
length at a later time. 

It may not be as apparent that there are several ways in which using the implicit 
method differs from current practice in plasma simulation. With the implicit code, 
more time is spent solving the field equations than storing and fetching particles. This 
places greater emphasis on efficient calculation, and less on information transfer 
operations. It also seems to be true that fewer particles are required for a given 
problem. Evidently, the implicit formulation suppresses fluctuations, thereby reducing 
the noise level in the results. Finally, as well as an upper limit on the time step 
imposed by accuracy requirements, there appears to be a lower limit imposed by the 
need to suppress the finite grid instability as shown earlier. 

There are many areas where more work is needed. Experience with the code has 
shown that more stable and accurate calculations of convective transport in the 
moment equations are necessary for strongly inhomogeneous plasmas. These can be 
carried over from ordinary fluid methods in a straightforward way. It is also 
straightforward to extend the plasma dispersion analysis to the electromagnetic case. 
Here the need may become apparent only after some unsuspected pathology. 

Finally, there are obvious opportunities for extension of the method to new 
problem areas. Many problems could be done more easily using the moment 
equations in a hybrid description, especially when density variations are large or one 
component of the plasma is collisional. Also, it may be useful to extend the method 
to the guiding center model for application to strongly magnetized plasmas. 

Clearly, the work presented here represents only the first step in exploiting the new 
opportunities offered by the implicit formulation. 

APPENDIX: DERIVATION OF THE MOMENT EQUATIONS 

Equations describing the evolution of the moments of the particle distributions can 
be derived directly beginning with the definitions of Nt+’ and J:+r. The definitions, 
written 

and 

N ~+~=qs~h(x-X;:e) 
P 

(Al) 

J ;+r = qs c u;y h(x - .pny), 
P 

642) 

are consistent with the representation of the plasma, but reduce to the ordinary 
definitions of charge and current density in the limit xg, + xg, g’ # g (i.e., infinite 
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resolution). Our present interest is not in spatial discretization, but beginning with the 
definitions above has the advantage of removing all ambiguity concerning time 
discretization and identifies each of the terms in the equations with specific 
operations on the particle data. 

Consider the definition for the charge density, Eq. (Al). From this definition, the 
continuity equation can be derived by expanding h about xis, and using Eq. (1.12), 

N :+e=qsCh(x-x~,)-(Up”:redt).vh(,,,~*+..., 
P 

where h is the piecewise linear function commonly used, the diffusionlike and higher- 
order terms are identically zero. Thus, substituting the definitions of charge and 
current density, Eqs. (1.6) and (1.7), yields the charge continuity equation 

N:+e=N:-V - J:+‘%At. (A4) 

It is interesting to consider the nature of the discretization errors. For h other than 
piecewise linear, there are higher-order terms to consider. Further, when ui$‘(OAt) 
exceeds the support of h (i.e., Iu,“:‘I 0 At > (xg - xgf I I), the change in the charge 
density is underestimated by the moment equation. Thus errors arise from 
discretization in space and time both. 

The equation for J:+r is similarly derived by expansion. Substituting from the 
particle equation of motion, Eq. (1.13), Eq. (A2) can be written 

J ~+r=qs~uy(x-x;~r) 
P 

E”+e+ uk+rXB” 
c 

(rAt)h(x-x;;r). 
(A% 

Only in the first term in this equation is h expanded about xis. Where a mean 
velocity is defined by 

u;(x) = c ups S(x - xps) I c m - xps)9 646) 
P P 

and a fluctuating velocity by 

u’ =u PS ps - ~is(XPS)~ 

and where continuous particle density and currents are defined by 

n,(x) = 4s c 4x - xps) 
P 

(A7) 

(448) 
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(A9) 

an equation for J:+r accurate to first order in At can be written 

- q,V . P,)(TAt). (AlO) 

The last term in Eq. (AlO) is the plasma pressure tensor 

B, = c u;: up h(x - xi,). (All) P 
about which more later. 

When the moment equations are solved on a discrete mesh, variables such as 
E”+e(x) are stored at mesh points and computed in between by interpolation, 

E(x) = 2 E, h(x - xg). (A121 
8 

When the support for h is bounded, nearby grid points are coupled together by the 
integral in Eq. (AlO). 

When the spatial domain is infinitely well resolved, however, the particle density 
and currents become equal to the grid density and current. For example, 

x 
d 
,Jj:,+, j dx' n&x') h(x - x') = N,(x). 

I' 
(A13) 

In this limit, the equation for Jitr can be written 

J :+r = J: - V . J: J:‘r/N; 

N,“trE”te+ J:trxB” (rAt)-q,V.P,. 
c 1 (Al4) 

Higher moments can be computed in a similar way. The moment equations, however, 
are truncated at J,, and the evolution of the pressure is obtained without solving an 
energy equation. 
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